作者单位
摘要
1 中国商飞上海飞机制造有限公司航空制造技术研究所,上海 201324
2 中国商飞上海飞机制造有限公司计量测试中心,上海 201324
采用脉冲激光器,开展了航空铝合金表面漆层去除试验,通过外观检查、光学显微镜(OM)、扫描电镜(SEM)、原位温度检测、力学性能检测和高周疲劳试验,研究了激光清洗工艺对航空铝合金组织、力学及疲劳性能的影响规律。结果表明:当激光功率和脉冲频率分别为80 W和100 kHz时,可去除铝合金表面环氧底漆涂层,但试样表面仍有漆层残余。当激光功率和脉冲频率分别达到500 W和500 kHz时,表面温度最高不超过115 ℃,未观察到明显的热影响区,材料表面10 μm深度范围内的组织出现部分烧蚀和熔化现象。激光清洗后,材料的硬度增加,并且随着激光功率、频率、能量密度的增加,硬度增幅逐渐减小。拉伸性能结果显示,激光清洗后的试样抗拉强度、屈服强度和延伸率较空白试样均略微下降。高周疲劳试验结果表明,与空白试样相比,激光清洗后的带漆试样的疲劳性能下降11.76%,这主要是激光清洗造成了表面粗糙度增加。经阳极氧化和喷漆处理后,激光清洗去漆不会进一步增加阳极氧化造成的疲劳损伤。
激光技术 激光清洗 航空铝合金 热影响区 力学性能 疲劳性能 
中国激光
2024, 51(16): 1602205
作者单位
摘要
中国工程物理研究院 流体物理研究所,四川 绵阳 621900
初始磁场电源系统用于激励千特斯拉级内爆磁压缩装置的初级线圈产生初始磁场,是内爆磁压缩装置的关键设备。在分析千特斯拉级内爆磁压缩装置初始磁场电源需求和技术难点的基础上,系统设计了核心部件选择方案和主脉冲电路及控制系统结构,研制成功一套输出电压1~40 kV可调、主放电电流脉冲上升沿约60 μs、总峰值电流达3.2 MA的初始磁场电源系统,已应用于千特斯拉级内爆磁压缩装置动态试验。
爆磁压缩 强磁场激励 复杂电磁环境 精确控制 explosive magnetic flux compression pumping of ultra-high magnetic field complex magnet-electrical circumstance precise control 
强激光与粒子束
2024, 36(2): 025016
吕柏韬 1,2安宁 1,*韩兴伟 1程程 3[ ... ]刘承志 1
作者单位
摘要
1 中国科学院国家天文台长春人造卫星观测站,吉林 长春 130117
2 中国科学院大学,北京 100049
3 中国人民解放军93175部队,吉林 长春 130117
4 中国人民解放军95975部队,甘肃 酒泉 732750
卫星激光测距(SLR)平均回波光子数是表征系统探测能力的重要参数之一,与激光大气传输特性紧密联系。基于Mie散射理论,结合气溶胶粒子的实际分布情况,提出并利用激光雷达大气修正(LAC)模型计算SLR系统平均回波光子数,以长春站60 cm SLR系统为例,分析气候条件对SLR系统平均回波光子数的影响。结果表明,SLR系统平均回波光子数随地表附近能见度增大而增加,随相对湿度增大而减少。当望远镜俯仰角大于15°时,能见度对平均回波光子数的影响将超过相对湿度,并且在俯仰角为60°左右时达到峰值。阐述了气候条件影响SLR探测性能的内在机制,并为SLR系统选址与性能评估提供了新的理论方案和技术支持。
卫星激光测距 平均回波光子数 大气透过率 激光雷达方程 
光学学报
2024, 44(12): 1201007
作者单位
摘要
苏州科技大学电子与信息工程学院,江苏 苏州 215009
为进一步提升高动态范围图像在普通显示器上的呈现效果,提出了一种基于改进拉普拉斯金字塔的高动态范围图像色调映射算法。该算法将预处理后的图像分解为高频层和低频层,分别输入2个特征提取子网络,将2个包含不同特征的输出图像融合后再输入微调网络,最终得到感知效果优越的低动态范围图像。此外,该算法设计了自适应分组卷积模块以增强子网络提取局部和全局特征的能力。测试结果表明:与现有的先进算法相比,所提算法可以更好地压缩高动态范围图像的亮度,保留更多图像细节,拥有更加优越的客观质量指标和主观感知效果。
图像处理 高动态范围图像 色调映射 拉普拉斯金字塔 深度学习 
激光与光电子学进展
2024, 61(4): 0437009
作者单位
摘要
1 清华大学环境学院环境污染溯源与精细监管技术研究中心, 北京 100084 清华苏州环境创新研究院先进监管技术仪器研发团队, 江苏 苏州 215163
2 北京 100084 清华苏州环境创新研究院先进监管技术仪器研发团队, 江苏 苏州 215163
近年来, 三维荧光技术已经成为常用的化学分析技术, 但有些结构相近的荧光有机物的三维荧光光谱十分相似, 可能导致分析结果错误。 因此, 如何精准区分具有相似三维荧光光谱的有机物是十分重要且亟待解决的问题。 荧光量子产率和荧光寿命是荧光有机物两个重要的光学参数, 对于分子结构的差异更灵敏。 对吲哚、 3-甲基吲哚和L-色氨酸的三维荧光光谱、 荧光量子产率和荧光寿命进行了研究。 结果表明, 它们的三维荧光光谱都出现两个荧光峰, 且荧光峰位置十分接近。 吲哚和L-色氨酸的荧光峰大致位于[激发波长, 发射波长]=[275, 340~350]和[220, 340~350] nm附近, 3-甲基吲哚的荧光峰位于[激发波长, 发射波长]=[280, 365]和[225, 365] nm附近。 在相同浓度下, 三种有机物在激发波长为275~280 nm处的最高荧光强度依次为: 吲哚>3-甲基吲哚>L-色氨酸。 利用绝对量子产率测量技术测得吲哚、 3-甲基吲哚和L-色氨酸的荧光量子产率分别约为0.264、 0.347和0.145; 利用时间相关单光子计数技术测得吲哚、 3-甲基吲哚和L-色氨酸的荧光寿命分别约为4.149、 7.896和2.715 ns。 研究表明, 荧光寿命和荧光量子产率能区分三维荧光光谱相似的荧光有机物, 研究结果在荧光有机物的准确识别上具有重要的价值。
三维荧光光谱 荧光有机物 荧光量子产率 荧光寿命 Excitation-emission matrix Fluorescent organic matter Fluorescence quantum yield Fluorescence lifetime 
光谱学与光谱分析
2023, 43(12): 3758
作者单位
摘要
苏州科技大学 电子与信息工程学院,江苏 苏州 215009
视觉诱导晕动症(VIMS)是虚拟现实(VR)体验过程中可能产生的一种常见症状,该症状严重降低了用户的体验的舒适度,阻碍了VR技术的推广和发展。虚拟空间畸变是影响VR体验舒适度的潜在因素之一,近眼显示设备不完全的畸变校正会产生虚拟空间畸变,进而可能引发VIMS。针对虚拟空间畸变对VIMS的影响程度,本文模拟VR技术的体验过程,对以VR技术为代表的近眼显示技术畸变机理进行分析,设计了3个不同畸变参数下VIMS等级评价的视觉感知实验,并对实验的主客观数据进行统计分析。结果表明,虚拟空间畸变对VIMS症状具有显著性影响,受测者观看立体影像的畸变程度越大,所引起的VIMS症状越明显。该研究可为VR技术体验的舒适度提升方向提供理论依据。
虚拟现实 视觉感知 畸变校正 视觉诱导晕动症 virtual reality visual perception distortion correction visually induced motion sickness 
液晶与显示
2023, 38(9): 1215
张毅 1,2刘传旸 2,3程澄 2,3沈鉴 2,3[ ... ]吴静 2,3
作者单位
摘要
1 苏州科技大学环境科学与工程学院, 江苏 苏州 215009
2 清华苏州环境创新研究院先进监管技术仪器研发团队, 江苏 苏州 215163
3 清华大学环境学院环境污染溯源与精细监管技术研究中心, 北京 100084
水质荧光指纹技术是近年来新兴的水体污染检测技术, 它可以展现水体有机物组成信息, 弥补传统常规水质参数的不足。 长江入海口段沿江地带是我国的产业密集带, 区域内城市化程度高, 工业发达, 在此区域内, 水环境质量变化会直接影响经济发展和民众身体健康, 因此, 研究长江入海口段的水质变化具有重要的意义。 长江入海口段的pH、 电导率、 NH3-N、 CODMn、 TP、 TN和TOC等指标变化趋势不尽相同, 但是从电导率、 TN、 CODMn、 TOC这四个指标, 反映出沿着长江入海口段从上游至下游的过程中具有一定的污染积累, 尤其在下游的CJ-11和CJ-12采样点, 可能受到了较大的污染源影响。 从常规指标和TOC的结果并不能直接体现污染信息, 只能反映污染总量从上游至下游的增加。 长江入海口段水质荧光指纹主要包含三个荧光峰, 记作峰A、 峰B、 峰C, 它们的[激发波长, 发射波长]分别为[275, 335] nm, [230, 345] nm 和[250, 450] nm, 其中峰A和峰B荧光强度的变化趋势同步, 相关性较高, 相关系数为0.994 8, 表明两峰很可能来自相同污染源。 通过水质荧光指纹比对, 在长江入海口段CJ-11和CJ-12两点的水质荧光指纹与支流HPJ-1的水质荧光指纹相似度分别达到86%和88%, 而与CJ-10的相似度<60%。 由此可见, 长江入海口段下游水质荧光指纹(CJ-11和CJ-12)发生变化, 可能是由支流HPJ汇入长江入海口段造成的。 支流HPJ的水质荧光指纹信号与印染行业水质荧光指纹数据库相似度约90%, 表明支流HPJ的水质荧光指纹信号可能与当地的印染废水排放有关。 基于长江入海口段峰A和峰B的强度与NH3-N浓度呈现良好的线性正相关性(相关系数为0.885 5), 水质荧光指纹具有作为指示长江入海口段NH3-N浓度的潜力。 水质荧光指纹技术可以展现水体有机物质组成和来源, 在污染示踪以及水质状况评价方面具有重要的应用价值。
水质荧光指纹 长江入海口段 有机物 污染源 Aqueous fluorescence fingerprint Yangtze River Estuary Organic matter Pollution source 
光谱学与光谱分析
2022, 42(12): 3948
作者单位
摘要
大连理工大学 材料科学与工程学院, 辽宁省凝固控制与数字化制备技术重点实验室, 大连 116024
In2O3作为一种良好的光电和气敏材料, 因高温下具有优异的热电性能在热电领域也获得广泛关注。本研究通过固相反应法结合放电等离子烧结(SPS)成功将原位自生的InNbO4第二相引入到In2O3基体中, 优化了块体样品的制备工艺。同时, InNbO4改善了样品的电输运性能, 使载流子浓度明显提高, 在1023 K时电导率最高可达1548 S·cm-1, 高于大多数元素掺杂的样品。其中, 0.998In2O3/0.002InNbO4样品的热电性能测试表明, 在1023 K时, 其功率因子可达到0.67 mW·m-1·K-2, 热电优值(ZT)达到最高值0.187。综上所述, 通过在In2O3中原位复合InNbO4第二相可以很好地改善In2O3基热电陶瓷的电性能, 进而调控其高温热电性能。
热电材料 In2O3 InNbO4 高温热电性能 thermoelectric materials In2O3 InNbO4 thermoelectric property at high temperature 
无机材料学报
2022, 37(7): 724
作者单位
摘要
1 1.大连理工大学 材料科学与工程学院, 辽宁省凝固控制与数字化制备技术重点实验室, 大连116024
2 2.大连理工大学 三束材料改性教育部重点实验室, 大连116024
ZrNiSn基half-Heusler热电材料具有较高的热导率, 限制了其热电性能进一步提高。为了降低晶格热导率, 本研究采用磁悬浮熔炼和放电等离子烧结的方法制备ZrNiSn和Zr0.5Hf0.5Ni1-xPtxSn (x=0, 0.1, 0.15, 0.2, 0.25, 0.3)高熵half-Heusler热电合金。在Zr位进行Hf原子替代, Ni位进行Pt原子替代以调控该合金的构型熵, 并研究构型熵对热电性能的影响。本工作优化了Zr0.5Hf0.5Ni0.85Pt0.15Sn在673 K的最小晶格热导率和双极扩散热导率之和为2.1 W·m-1·K-1, 与ZrNiSn相比降低了约58%。这一发现为降低ZrNiSn基合金的晶格热导率提供了一种有效的策略, 有助于改善材料的热电性能。
高熵 half-Heusler合金 热电材料 晶格热导率 high entropy half-Heusler alloy thermoelectric material lattice thermal conductivity 
无机材料学报
2022, 37(7): 717
作者单位
摘要
1 长春理工大学 高功率半导体激光国家重点实验室,长春 130022
2 海南师范大学 物理与电子工程学院 海南省激光技术与光电功能材料重点实验室,海口 571158
3 长春新产业光电技术有限公司,长春 130103
采用V型腔腔内二倍频和透镜聚焦方式腔外四倍频结构,基于Nd:YVO4准三能级激光系统914 nm基频光级联非线性光学频率变换获得连续波228 nm激光输出。在通常情况下,与脉冲运转方式相比,连续运转激光实现透镜聚焦腔外倍频需要较高的平均功率和较好的光束质量。为了获得较高457 nm连续激光输出性能,理论计算V型腔分臂的长度变化对腔内不同位置光斑大小的影响;实验研究了V型腔不同分臂长度对LD端泵Nd:YVO4/LBO产生457 nm激光输出性能的影响。最终,在泵浦功率为26 W时,获得功率为2.2 W的TEM00模连续波457 nm激光输出,利用I类临界相位匹配BBO晶体对其进行腔外倍频,获得功率为6 mW的228 nm连续波深紫外激光,激光光斑呈椭圆形,一小时内功率稳定性为1.8%。
激光器 全固态激光器 四倍频 深紫外激光 连续波228 nm激光 Laser All-solid-state laser Quadruple frequency Deep ultraviolet laser Continuous-wave 228 nm laser 
光子学报
2022, 51(9): 0914003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!